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An integral model of a nonstationary vertical convective jet is suggested that involves a universal
equation of the propagation of the upper boundary of a convective front depending on the power of
the point heat source. A class of self-similar solutions is considered; they correspond to the heat
sources whose power changes instantly and also according to the power and exponential laws. Ana-
lytical and numerical solutions of the self-similar equations are constructed. Numerical calculations
are compared with the well-known experimental data on the profiles of the vertical velocity and tem-
perature on the jet axis.

Theoretical description of nonstationary convective jets has been initiated relatively recently. The first
model of such a jet was suggested in [1]. The use in [1] of the vertical boundary-layer approximation and of
the integral von Ka′rma′n−Pohlhausen method made it possible to construct amplitude equations for a vertical
velocity and temperature on the jet axis. The closure of the system of equations was performed with the aid
of a heuristic differential equation of transfer for the jet radius. Later, a similar model was used in [2].
Within the framework of the models of [1, 2] that use the modified Taylor’s approach, it was possible to
construct a class of self-similar solutions corresponding to a point heat source that changes in time according
to the power law and also to compare the obtained numerical results with experimental data.

A somewhat different hydrodynamic description of a nonstationary convective jet was developed in
[3]. The model was based on the Prandtl approach that prescribed a conical shape of the jet. Moreover, to
describe the motion of the plane upper boundary of the jet, which corresponds to the base of the cone, a
universal equation of the propagation of a convective front [3, 4] was adopted, which relates the variable
height of the jet to the integral time dependence of the power of the point heat source. It is shown in [3, 4]
that this model also involves self-similar regimes that correspond to the heat sources changing in time accord-
ing to power laws. It is essential that the universal equation of the propagation of a convective front allows
construction of self-similar solutions that correspond to instantaneous and exponential heat sources that can be
considered as enveloping sets of power solutions. Here, the constructed exponential solution represents a self-
similar solution of the second kind [5], since it cannot be obtained on the grounds of dimensionality theory.

In the present work, the integral hydrodynamic model of [3, 4] is refined by using the experimentally
observed horizontal profiles of temperature and vertical velocity [6]. Within the framework of the integral
model, an analytical solution for a convective thermal is constructed which corresponds to instantaneous and
point heat sources. A numerical investigation of power and exponential self-similar regimes of the propaga-
tion of a nonstationary convective plume is made, which includes comparison with the well-known experi-
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mental data on the profiles of the vertical velocity and temperature on the jet axis. The acceptable agreement
of the theory with the observations makes it possible to use the proposed hydrodynamic model in the practice
of scientific-engineering calculations of the development of nonstationary convective jets and thermals.

The Problem of a Turbulent Jet over a Point Heat Source. We consider the problem of the propa-
gation of an axisymmetric convective jet in an adiabatic atmosphere over a point heat source. Let t be time
and r, ϕ, z be the cylindrical coordinate system whose z axis is opposite to the free-fall acceleration g.

The convective jet is described with the aid of the Boussinesq convection equation for a perfect gas
[7]. Let Θ

__
a = const be the background static value of the potential temperature of a dry air and Θ be the local

potential temperature of the air*). Following [7], we introduce the local dimensionless potential temperature θ:

 θ = 
Θ − Θ

__
a

Θ
__

a

 . (1)

The axisymmetric nonstationary convective jet is described within the framework of the vertical
boundary-layer approximation [8]:
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Equations (2)−(4) can also be used effectively in describing a convective jet in a homogeneous fluid.
Here, the quantity θ is understood to be the ratio of the difference between the local density and the density
of a nonperturbed fluid to the value of the nonperturbed fluid density.

The system of equations (2)−(4) is considered in the semiinfinite region V = {0 ≤ r ≤ ∞, 0 ≤ ϕ ≤ 2π,
0 ≤ z ≤ ∞}, where π = 3.14... .

The existence of the kinetic, potential, and internal energy allows an assumption that the functions
u2, w2, gθz, and θ belong to the functional space L1(V) (see [9]). The integrability of the function over the
infinite region V leads to the condition of their decay on infinitely distant boundaries.

Taking into account the fact that the medium is not perturbed on the upper boundary of the region,
we prescribe the no-flow and flow decay conditions as

   lim
z→∞

  w (r, z, t) = 0 ,   lim
z→∞

  2π ∫ 
0

∞

w (r, z, t) rdr = 0 ,   lim
z→∞

  ww (r, z, t) = 0 ,   lim
z→∞

  2π ∫ 
0

∞

ww (r, z, t) rdr = 0 ,

   lim
z→∞

  wθ (r, z, t) = 0 ,   lim
z→∞

  2π ∫ 
0

∞

wθ (r, z, t) rdr = 0 . (5)
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*)  The potential temperature of a dry air Θ is defined by the relation s = cp ln ( Θ/ Θa), where s is the entropy of
the dry air and cp is the heat capacity of the dry air at a constant pressure.



As the side boundary-value conditions of system (2)−(4), we adopt the no-flow and flow decay con-
ditions in the form

   lim
r→∞

  ur = 0 ,   lim
r→∞

  νwr 
∂w
∂r

 = 0 ,   lim
r→∞

  νθr 
∂θ
∂r

 = 0 . (6)

On the lower boundary of the region we prescribe the point nonstationary heat source and zero source
of momentum, i.e.,

   lim
z→0

  [ww (r, z, t)] = 0 ,   lim
z→0

  [wθ (r, z, t)] = 
1

2πr
 S0 (t) δ (r) ,   S0 (t) > 0 . (7)

The state of a nonperturbed atmosphere is taken as the initial condition for t = t0:

w (r, z, t0) = 0 ,   θ (r, z, t0) = 0 . (8)

Equations (2)−(8) form a closed system of equations for describing a convective jet.
Integral Model of a Convective Jet over a Point Heat Source. To construct an approximate solu-

tion of system (2)−(4), we use the von Ka′rma′n−Pohlhausen integral method [8]. Within the framework of this
approach, it is assumed that the unknown functions in the region of ascending motion with the characteristic
horizontal radius R(z, t) can be approximated by relations with separating variables*):

w (r, z, t) = w~ (z, t) fw (r ⁄ R) ,   u (r, z, t) = − 
∂w~

∂z
 (z, t) 1

r
 ∫ 
0

r

rfw (r ⁄ R) dr ,   θ (r, z, t) = θ
~

 (z, t) fθ (r ⁄ R) .
(9)

Substituting Eq. (9) into Eqs. (2) and (3) and integrating the resulting equations over the area of as-
cending motions, we can obtain nonstationary amplitude equations of a convective jet at arbitrarily given pro-
files of fw and fθ.

To compare with the already available models [1, 2], we use exponential approximations of horizontal
profiles in accordance with the well-known experimental data of [6]:

fw (ξ) = exp (− λwξ2) ,   fθ (ξ) = exp (− λθξ
2) ,   ξ = r ⁄ R . (10)

Then, with Eq. (10) taken into account, the corresponding amplitude equations become

∂
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1
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∂
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 w~w~R2 = αggθ~R2 ,   
∂
∂t

 θ~R2 + 
1

1 + αg
 
∂
∂z

 w~θ~R2 = 0 ,   αg = λw
 ⁄ λθ . (11)

Substituting Eqs. (9) and (10) into system (7) and integrating the obtained relations over the area of
ascending motions, we obtain the boundary conditions for Eq. (11):

   lim
z→0

  [w~w~R2 (z, t)] = 0 ,   lim
z→0

  [w~θ
~

R2 (z, t)] = 
1

π
 
λw

k2  S0 (t) ,   k2 = 
αg

1 + αg

 . (12)
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*)  The existence of the approximations that include spatial separation of variables and similarity over the horizontal
coordinates has been reliably established experimentally (see review [10]). In the case of turbulent jets developing
at Reynolds numbers Re >> 1 the dependence of the shape of the profiles of fw and fθ on the coefficients of turbu-
lent exchange νw and νθ should be neglected.



To close the system of equations (11) and (12), it is necessary to include an equation for the radius
of the jet R. Following [3, 4], we assume thereafter that the convective thermal is approximated by a conical
surface and by a horizontal head part and, moreover, at any time instant the shape of the thermal remains
similar (see Fig. 1).

In accordance with the Prandtl hypothesis on linear expansion of a jet adopted in models of [11, 3,
4], for the radius of a plume over a point source we use the relation

R (z, t) = 




αRz

0
     

for   0 ≤ z ≤ h (t) ,
for   h (t) ≤ z ≤ ∞ ,

(13)

where αR is the coefficient of the angular expansion of the jet. The value of this coefficient varies from 0.1
to 0.2 (see, e.g., [10]); h(t) is the time-dependent upper boundary of the conical surface of the jet*)

As the equation that describes the propagation of the upper boundary of the convective jet from a
heat source in a neutral atmosphere, we adopt the relation suggested in [3, 4]:

Fig. 1. Contour of a developing convective jet induced by a point heat
source, and geometrical stylization of jet propagation.

Fig. 2. Propagation of the upper boundary and the contour of the se-
quential position of the thermal over the point heat source. h2, m2; t, sec.
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*)  For details of experimental confirmation of Prandtl’s hypothesis, see [12] and also numerical calculations on a
multidimensional nonstationary model [13].
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 h


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 = g ∫ 
t0

t

S0 (τ) dτ ,   λ0
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π
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k2

λw
 αR

2 (1 + αg)
2 . (14)

In subsequent numerical experiments it will be assumed that, according to [6], λw = 96αR
2, λθ =

0.74λw, and, correspondingly, αg = λw
 ⁄ λθ = 1.35. Here, λ0

2 = 5.15⋅10−2, in full correspondence with the ex-
perimentally observed values λ0

2 = 2.22⋅10−2−4.56⋅10−2 given in [14] (see Fig. 2).
Relations (11)−(14) form a closed system of equations of the integral model of a vertical convective

jet.
Quasistationary Equations as the Asymptotics of the Solution in the Vicinity of a Source. Taking

into account the presence of the singularity of the solution in the coordinate origin due to the effect of a point
heat source, it is expedient to describe the asymptotic solution of the problem of a convective jet near the
source. According to [1, 2], this can be done with the aid of quasistationary equations (11), i.e., equations
lacking time derivatives.

Let S
~
 be the power of the reduced heat source as prescribed by the relation

 S
~
 (t) = 

1

π
 
λw

k2  S0 (t) . (15)

The velocity, temperature, and radius of the quasistationary jet over the point heat source in an adi-
abatic atmosphere are
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

3
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 αggS
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 (t)

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

−1 ⁄ 3
 S
~
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−4 ⁄ 3 z−5 ⁄ 3 ,   R (z, t) = αRz .
(16)

Note that relations (16) are also of self-sustained interest, since in the case of a stationary source (S
~
(t)

= const) they correspond to an exact solution of the problem of a stationary jet propagating in a neutral
atmosphere. The functional relations (16) were first found by Zel’dovich [15] upon application of the similar-
ity theory arguments. Later, relations of the type (15) were obtained as solutions of the integral model of a
jet.

Let h(t) be the convective jet height corresponding to the heat source S0(t) and calculated according
to Eq. (14). We introduce the dimensionless variable z∗  = z ⁄ h(t). Then, the quasistationary solution (16) can
be represented as

 w~a0 (z, t) = 
dh
dt
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where the dimensionless functions ws
∗ , θs

∗ , and R∗  and the normalized heat flux power S0
∗  have the form
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It is obvious that the functions (18) satisfy the relations
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2 ,   
1

1 + αg
 

∂
∂z∗

 ws
∗ θs

∗ R∗
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Next, for comparison with experimental data the general solution of the nonstationary problem will be
normalized to the quasistationary solution (16)−(18).

Self-Similar Regimes of Propagation of a Convective Front. For a number of specially prescribed
amplitudes of a heat source the corresponding regimes of propagation of a convective front can be obtained
on the basis of the dimensionality theory without resorting to the proposed universal relation (14). We will
show that Eq. (14) not only includes all of the earlier known relations as specific cases, but also allows one
to construct new self-similar regimes.

We consider the convection caused by an instantaneous heat source. Then, Eq. (14) yields

t0 = 0 ,   S0 (t) = Q0 δ (t) ,   Q0 = const ,   h (t) = 


2
λ0





1 ⁄ 2

 (gQ0)
1 ⁄ 4 t1

 ⁄ 2 . (20)

The relation corresponding to Eq. (20) was obtained by the similarity and dimensional analysis
method and was checked experimentally in [14] (see Fig. 2).

Let us consider the convection caused by the power heat source. Then, Eq. (14) for t0 = 0, S0(t) =
Qqqtq−1, q > 0, Qq = const yields

h (t) = 








2

λ0



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gQq

(q ⁄ 2 + 1)2 t(q+2)



1 ⁄ 4

 . (21)

The relation corresponding to Eq. (21) was obtained by the similarity and dimensional analysis method and
was checked experimentally in [1, 2].

Now, we consider the convection caused by the exponential heat source. Then, Eq. (14) for t0 = −∞,
S0(t) = Q∞q exp (qt), and Q∞ = const yields

h (t) = 








2
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
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gQ∞

(q ⁄ 2)2 exp (qt)




1 ⁄ 4

 . (22)

Formula (22) is a self-similar relation of the second kind [5], since it cannot be obtained only on the
basis of dimensionality-theory arguments. It should be interpreted as the "envelope" of a set of power solu-
tions (21) for t0 → −∞ and q → +∞.

Development of Self-Similar Jets over a Point Heat Source. The integral model of a nonstationary
jet and the corresponding self-similar solutions for point heat sources have been constructed for the first time
in [1, 2]. We will show that for point heat sources the self-similar regimes (20)−(22) generate the correspond-
ing classes of self-similar motions also for the proposed integral jet model.

Let z∗  = z ⁄ h(t) be a dimensionless parameter. The self-similar solution of system (11)−(14) for
0 < z < h(t) can be sought in the form

w~ (z, t) = 
dh
dt

 w∗  (z∗ ) ,   θ
~

 (z, t) = 
1

gh
 

dh
dt





2

 θ∗  (z∗ ) ,   R (z, t) = hR∗  = hαRz∗  . (23)

For power sources (21), the substitution of Eq. (23) into system (11) for 0 < z∗  < 1 leads to an system
of ordinary differential equations:
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(24)

According to Eq. (12), the boundary-value conditions of system (24) have the form

   lim
z∗ →0

  



w∗ w∗ R∗

2


 = 0 ,   lim

z∗ →0
  




w∗ θ∗ R∗

2


 = 

1

π
 
λw

k2  
4q

q + 2
 λ0

2 . (25)

Similar relations can be derived for an instantaneous (20) and an exponential (22) source. Here, the
coefficients in corresponding equations (24) and (25) result from the limiting transition for q → 0 and
q → ∞.

We note that in the region of large enough exponents of the sources 20 < q < ∞ the coefficients (25)
can be considered constant, independent of q. Thus, all the self-similar jets with large enough exponents of
sources have practically identical velocity and temperature profiles that correspond to the exponential source.

It should be emphasized that systems of equations of the type (24) and (25) will hold in the case of
arbitrarily specified profiles fw and fθ. Consequently, the self-similarity constructed is the common property of
the one-dimensional nonstationary model.

Analytical Description of the Self-Similar Regime of the Development of a Thermal. For the case
of an instantaneous point heat source (20) the nonzero analytical solution of (24) and (25) at q = 0 is

w∗  (z∗ ) = (1 + αg) z∗  ,   θ
∗  (z∗ ) = 2 (1 + αg) z∗  ,   R∗  (z∗ ) = αRz∗  . (26)

We show that analytical solution (26) implements the integral heat balance that corresponds to instan-
taneous heat generation. Indeed, let ξ = r ⁄ R and z∗  = z ⁄ h(t); then the dimensionless potential temperature of
the thermal θ can be represented, with account for (9), (10), and (20), in the form

θ (r, z, t) = θ
~

 (z, t) fθ (ξ) = 
1

gh
 




dh

dt





2

 θ∗  (z∗ ) fθ (ξ) = 




Q0

λ0
2h3




 θ∗  (z∗ ) exp (− λθξ

2) . (27)

Thus, the total temperature of the propagating layer, calculated with account for Eqs. (26), (27), and
(13), satisfies the integral relation of instantaneous heat generation:

2π ∫ 
0

h

∫ 
0

∞

θrdrdz = 
2παR

2

2λ0

 ∫ 
0

h

θ
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 (z, t) z2dz = 
παR
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λw
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
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λ0
2h3



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 h3 ∫ 

0

1

θ∗  (z∗ ) z∗
2dz∗  =

= 2 (1 + αg) 
παR

2αg

λ0
2λw

 Q0 ∫ 
0

1

z∗
3dz∗  = 

(1 + αg)

2
 
παR

2αg

λ0
2λw

 Q0 = Q0 . (28)

Analytical solution (26) shows that the velocity and temperature on the axis of the convective thermal
increase linearly with height. To be sure, in an actually developing convective thermal the linear increase in
the velocity and potential temperature is maintained just to a certain level 0 ≤ z∗  < 0.75, above which the coni-
cal shape of the thermal ceases to exist.
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Relations (26) imply the existence of a dimensionless parameter which is constant along the axis of
the thermal that rises in a neutral atmosphere:

w~ 2

gθ
~

R
 = 

(w∗ )2

θ∗ R∗

 = 
1 + αg

2αR

 .
(29)

This expression should be considered as the theoretical foundation of Scorer’s empirical relation [14] obtained
for air bubbles rising in a homogeneous liquid, with the right-hand side of Eq. (29) being independent of
either the height or the power of the instantaneous source.

Numerical Description of Self-Similar Regimes of Jet Development. Taking into account the as-
ymptotic behavior of a convective jet, when z∗  << 1, in accordance with [1, 2] the subsequent representations
of the results will use the functions ϕw and ϕθ, where

w

wa0

 = 
w∗

ws
∗  = ϕw (z∗ ) ,   lim

z∗ →0
  ϕw (z∗ ) = 1 ;   

θ
θa0

 = 
θ∗

θs
∗  = ϕθ (z∗ ) ,   lim

z∗ →0
  ϕθ (z∗ ) = 1 . (30)

Following [1, 2], we introduce the dimensionless parameter ẑ, where

ẑ = 
1

S0 (t)
 
dS0

dt
 

z

w~a0 (z, t)
 .

(31)

Using relations (15) and (16), we may show that for exponential heat sources

ẑ = Cz∗
4 ⁄ 3 ,   C = 

4
(1 + αg)

 




q − 1
q + 2




 




q + 2
3q





1 ⁄ 3

 . (32)

We consider, as an example, numerical solution of self-similar equations for the case of q = 4 for the
involvement coefficient αR = 0.1. The results of calculations of the normalized velocity and potential tem-
perature and their comparison with the experimental data of [2] are presented in Fig. 3.

Conclusions. The analytical results of the present work show that the proposed integral model of a
convective jet that includes a universal equation for the propagation of the upper boundary of a convective

Fig. 3. Calculation of the dependence of the normalized vertical velocity
w ⁄ ws

∗  (a) and potential temperature θ ⁄ θs
∗  (b) on z^ (solid lines) and also

experimental data corresponding to different runs of measurements [2]
(dots) and numerical calculations by the model of [2] (dashed lines).
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front contains a class of self-similar solutions corresponding to instantaneous, power, and exponential heat
sources. The results of calculations of the vertical velocity and potential temperature profiles on the jet axis
by the proposed model point to the acceptable correlation with both the well-known experimental data and
theoretical models [1, 2].

Appendix. Equation for Convective Front Propagation above a Point Heat Source. According to
[16], we determine the convective front as a mobile horizontal plane z = h(t), on the σ surface of which

dh
dt

 ∫ 
σ

θ (r, h, t) dσ − ∫ 

σ

wθ (r, h, t) dσ = 0 ,   dσ = 2πrdr . (A.1)

We show in what follows that a layer of atmospheric air located above the convective front z = h(t)
is not heated at all by the point heat source.

Direct experimental determination of the convective front height from (A.1) is rather difficult. Only
the change in the upper boundary of the colored convective plume that corresponds to zero dimensionless
pulsation of the potential temperature θ is accessible for direct measurements in practice.

We approximate a convective plume over a point heat source by a cone of equivalent volume (see
Fig. 1). Then, on the upper boundary of the conical surface θ = 0 and, consequently, (A.1) is satisfied iden-
tically.

Within the framework of approximation (9) and (13), on the surface of the convective front z = h(t)

w (r, h, t) = w~ (h, t) fw (r ⁄ R) ,   θ (r, h, t) = θ
~

 (h, t) fθ (r ⁄ R) ,   R (h, t) = αRh (t) . (A.2)

Substituting (A.2) into (A.1), we obtain

(1 + αg) 
dh
dt

 = w~ (h, t) , (A.3)

i.e., the velocity of the front is determined only by the velocity of the particles located on the jet axis.
Let us pass to the construction of the basic integral relations. The integration of Eq. (4) with account

for the boundary-value conditions (6) and (5) yield

∂
∂z

 ∫ 
σ

wdσ = 0 ,     ∫ 
0

h(t)

  ∫ 

σ

wdσdz = 0 .
(A.4)

Integrating Eqs. (2) and (3) with account for boundary conditions (6) and (7), we obtain

  ∫ 
σ

w2 (r, h, t) dσ = g   ∫ 
0

h(t)

  ∫ 
σ

θdσdz ,
(A.5)

∂
∂t

   ∫ 
0

h(t)

  ∫ 

σ

θdσdz − 


dh
dt

 ∫ 
σ

θ (r, h, t) dσ − ∫ 

σ

wθ (r, h, t) dσ


 = S0 (t) . (A.6)

Integration of relation (A.6) with account for initial conditions (8) and Eq. (A.1) and substitution of
the obtained result into (A.5) yields
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2π ∫ 
0

∞

w2 (r, h, t) rdr = g ∫ 
t0

t

S0 (τ) dτ . (A.7)

The use of (A.2) and (A.3) in (A.7) leads to the equation for the propagation of the convective front
over the point source of buoyancy:

λ0
2h2 



d
dt

 h



2

 = g ∫ 
t0

t

S0 (τ) dτ ,   λ0
2 = 

π
2λw

 αR
2 (1 + αg)

2 . (A.8)

The value of the constant λ0
2 = 9.04⋅10−2 calculated from Eq. (10) somewhat exceeds the experimental

values λ0
2 = 2.22⋅10−2−4.56⋅10−2 obtained in ejection of colored liquid into fresh water and given in [11].

Taking into account the approximate character of the boundary-layer equations and of the von

Ka′rma′n−Pohlhausen integral method, the value λ0
2 derived should not be considered as an exact value that

characterizes the actual propagation of a convective front. Therefore, in the calculations given above it is

advisable to use the somewhat smaller value λ0
2 = 

π
2

 
k2

λw
 αR

2(1 + αg)2 = 5.15⋅10−2, which agrees much better

with the experimental data of [14].
Equation (A.8) admits a rather clear physical interpretation. It is obvious that the effective area of the

convective front is proportional to h2; therefore, the value h2(dh ⁄ dt)2 corresponds to the total kinetic energy
of the convective front (see the left-hand side of (A.8)). Thus, according to (A.8), the total kinetic energy of
the convective front at any instant of time is proportional to the value of the work of buoyancy forces which
comes to the medium from the source on the substrate surface. The modification of Eq. (A.8) to the case of
a linear and plane heat source is given in [4].

NOTATION

u and w, components of velocity along the r and z axes, respectively, m/sec; vw and vθ, coefficients
of turbulent exchange for a vertical velocity and dimensionless potential temperature, m2/sec; S0, power of
point source of heat, m3/sec; δ(r), Dirac delta-function; w~ and θ

~
, vertical velocity and dimensionless potential

temperature on the axis of a nonstationary jet, m/sec; w~a0 and θ
~

a0, amplitudes of the vertical velocity and
dimensionless potential temperature on the axis of a quasistationary jet, m/sec; fw and fθ, dimensionless hori-
zontal profiles of vertical velocity and potential temperature; λw and λθ, numerical parameters characterizing
dimensionless horizontal profiles of the vertical velocity and potential temperature; w∗ , θ∗ , R∗ , and S0

∗ , nor-
malized dimensionless functions of the vertical velocity, potential temperature, radius, and power of a heat
source; ws

∗  and θs
∗ , normalized dimensionless functions of the vertical velocity and potential temperature of a

quasistationary jet.
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